

X-3. A 35 GHZ LATCHING SWITCH

William C. Passaro and James W. McManus

Sperry Microwave Electronics Co., Clearwater, Florida

Introduction. This paper describes the development of a lightweight fast-switching 35 GHz latching ferrite circulator, with an instantaneous bandwidth of 5%, and a switching time of less than 0.30 microseconds. The device is designed for use over the temperature range of -60° C to $+100^{\circ}$ C under dynamic operating conditions. It is particularly well suited for use as a switching element in those applications where high reliability, small size and weight, and fast switching time are required. Total weight of the device (excluding electronic driver) is less than 0.6 ounces, and total volume is less than 0.75 cubic inch. The unit is pictured in Figure 1.

Three-port junction circulators using externally-applied magnetic biasing fields have been investigated and reported on by many people¹⁻⁵. Application of these devices as switching elements has required the use of electromagnets, resulting in large cumbersome units requiring continuous holding power and closely controlled power sources. In addition, these devices have been too slow for many proposed rf switching applications.

More recently, the novel application of latching ferrites to junction circulators has been reported by Goodman⁶, describing the construction of an X-band waveguide circulator. Similar techniques were used to develop the device described in this paper. However, a different geometrical configuration was chosen for the latching element, as shown in Figure 2.

Circulator Design. The basic configuration for the design of the junction circulator is based on the work of Bosma,⁴ as further extended by Fay and Comstock.⁵ Minor modifications in the design procedure are incorporated to allow for operation in the remanent state, since the remanent magnetization of the material appears to provide the necessary magnetic biasing of the ferrite.

The latching ferrite element shown in Fig. 2 is designed to provide a closed magnetic path entirely within the ferrite material. The wire carrying the switching current pulse enters at the waveguide junction, encircles the latching element, as shown, and emerges at the same point from which it entered. The wire must be placed in a plane which is parallel to the rf H-plane so as to minimize the possibility of rf magnetic field coupling. Rapidly reversing the sense of magnetization of the material by reversing the polarity of driving current pulses results in reversing the direction of circulation in the device, and hence lends itself very well to fast switching applications.

Switching data are presented in Figure 3, where it can be seen that switching times of less than 0.30 microsecond have been achieved, at a specified switching rate of 1 KHz, over the temperature range of -60° C to $+100^{\circ}$ C. It was observed that the switching characteristics of the device appear to be a function of the physical volume, as well as specific material; this appears to be in agreement with previously published reports by earlier theoretical investigators.^{7,8}

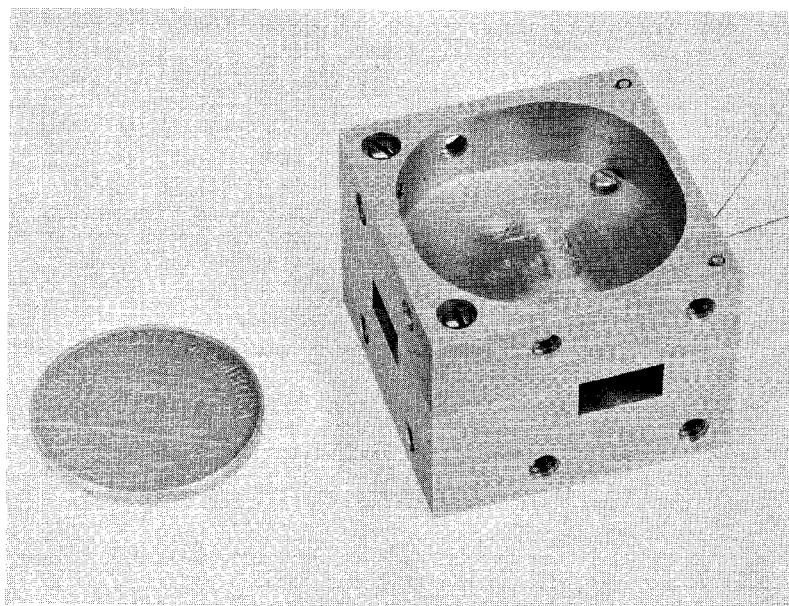


FIG. 1. 35 GHZ LATCHING SWITCH

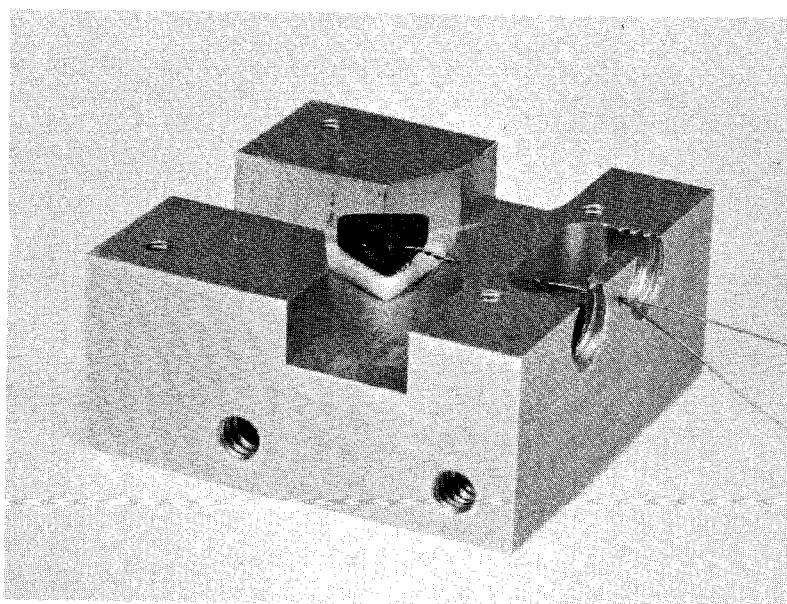


FIG. 2. TRIANGULAR FERRITE SWITCHING ELEMENT

Final matching of the junction was accomplished through the use of external reactive elements. Operating characteristics of the device at room temperature are shown in Figure 4, where it can be seen that the insertion loss has been kept to 0.5 dB maximum, while isolation in excess of 15 dB has been maintained. Figure 5 displays the performance of the device at -60°C , while Figure 6 shows the operating characteristics at $+100^{\circ}\text{C}$.

Techniques similar to those described in this paper have been used to develop a single-junction four-port latching circulator operating in X-band, while three-port devices have been developed in both waveguide and strip line construction.

References.

1. U. Milano, J. Saunders, and L. Davis, "A Y-Junction Strip-Line Circulator", IRE Trans. MTT-8, p. 346, 1960.
2. H. M. Chait, T. R. Curry, "Y-Circulator", Journl. App. Physics, Vol. 30, p. 152 S, 1959.
3. B. A. Auld, "The Synthesis of Symmetrical Waveguide Circulators", IRE Trans. MTT-7, p. 238, 1959.
4. H. Bosma, "On Strip-line Y-Circulation at UHF", IEEE Trans. MTT-12, pp 61 - 72, January 1964.
5. C. E. Fay and R. L. Comstock, "Operation of the Ferrite Junction Circulator", IEEE Trans. MTT-13, pp 15 - 27, January 1965.
6. P. C. Goodman, "A Latching Ferrite Junction Circulator for Phased Array Switching Applications", presented at 1965 G-MTT Symposium, Clearwater, Florida, May 1965.
7. J. B. Birks, and J. Hart, Progress in Dielectrics, Vol. 5, Academic Press Inc., New York, 1963. (H. P. Peloschek, "Square Loop Ferrites and their Applications", pp 37 - 93).
8. H. Rubenstein, "Switching Properties of Ferrites and Garnets", Scientific Rpt. #6, Series #2, Gordon McKay Labs, Harvard Univ., Cambridge, Mass. November 30, 1962 (Contract No. AF19(604)-5487, AFCRL).

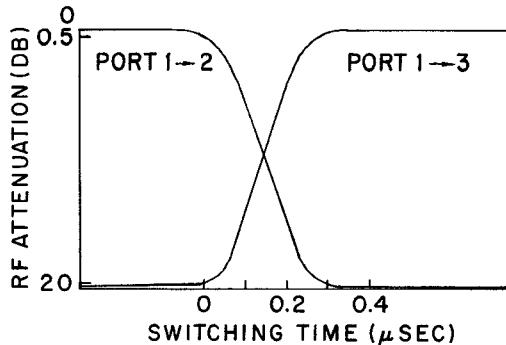


Fig 3. Switching Characteristics

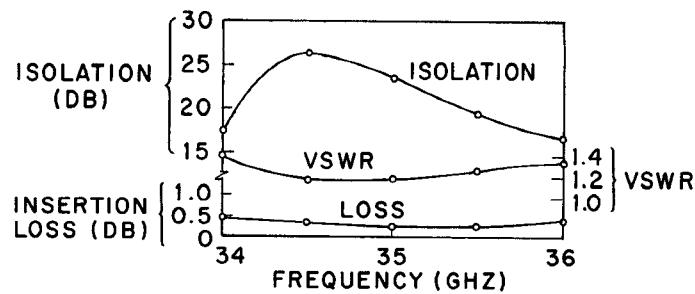


Fig.4. Performance Characteristics at Room Temperature

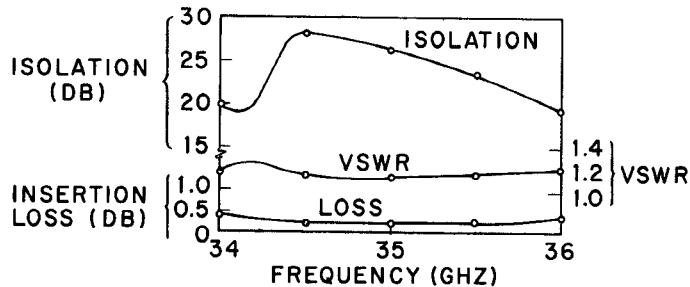


Fig.5. Performance Characteristics at -60°C

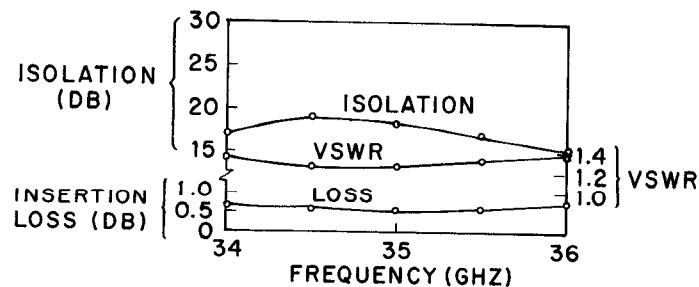


Fig. 6. Performance Characteristics at 100°C

MICROWAVE CHEMICALS LABORATORY, INC.
282 Seventh Avenue • (212) 924-6725
New York, New York 10001

Yttrium Iron Garnet for all your Microwave Circulator Designs

OMNI SPECTRA, INC.
19800 W. Eight Mile Road, Southfield, Michigan 48075
Tel. 313 — 444-8890 TWX 810-232-1611

Research, development and manufacturing; miniature coaxial
components, RF Coaxial connectors and assemblies.